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Abstract. In this paper we propose a new “transcurrent execution model”
(TEM) for concurrent user queries against tree indexes. Our model ex-
ploits intra-parallelism of the index scan and dynamically decomposes
each query into a set of disjoint “query patches”. TEM integrates the
ideas of prefetching and shared scans in a new framework, suitable for
dynamic multi-user environments. It supports time constraints in the
scheduling of these patches and introduces the notion of data flow for
achieving a steady progress of all queries. Our experiments demonstrate
that the transcurrent query execution results in high locality of I/O which
in turn translates to performance benefits in terms of query execution
time, buffer hit ratio and disk throughput. These benefits increase as the
workload in the warehouse increases and offer a scalable solution to the
I/0 problem of data warehouses.

1 Introduction

Tree-based indexes like B-trees, BT -trees, bitmap indexes [16,2] and variations
of R-trees [19,12] are popular in data warehousing environments for storing
and/or indexing massive datasets. In a multiuser environment accessing these
indices has the potential of becoming a significant performance bottleneck. This
is because in an unsynchronized execution model, concurrent queries are “com-
peting” for the shared system resources like memory buffers and disk bandwidth
while accessing the trees. Scheduling of disk requests and prefetching are well-
studied techniques [8,23, 1] exploited by all modern disk controllers to maximize
the performance of the disk sub-system. However, optimizing the execution of
the I/O at the physical disk level does not always realize the potential perfor-
mance benefits. Even-though most commercial systems perform asynchronous
1/0, from the buffer’s perspective the interaction with a query is a synchronous
one: the query thread asks for a page, waits till the buffer manager satisfies the
request and then resumes execution. This leaves the buffer manager with lim-
ited opportunities for maximizing performance. In most cases, overlapping 1/0
among multiple queries is only exploited if it occurs within a small time-space
window.

* Work performed while the author was with the Department of Computer Science,
University of Maryland, College Park



Recently, data warehousing products introduced the notion of shared circu-
lar scans (e.g. RedBrick). The idea is for a new scan to join (merge) with an
existing scan on the index/table that currently feeds a running query. Obviously
the latter scan will have to access the beginning of the index later. Microsoft’s
SQL server supports “merry-go-round” scans by beginning each index at the cur-
rent position, however there is no explicit synchronization among the queries.
In this paper we capitalize on, extend and formalize the idea of shared index
scans. We propose a new “transcurrent execution model” (TEM) for concurrent
user queries against tree indices, which is based on the notion of detached non-
blocking query patches. This is achieved by immediately processing index pages
that are in memory and detaching execution of disk-resident parts of the query
that we call “patches”. TEM allows uninterrupted query processing while waiting
for I/0O. Collaboration among multiple queries is accomplished by synchronizing
the detached patches and exploiting overlapping I/O among them. We use a
circular scan algorithm that dynamically merges detached requests on adjacent
areas of the tree. By doing the synchronization before the buffer manager, we
manage to achieve a near-optimal buffer hit ratio and thus, minimum interaction
with the disk at the first time. Compared against shared circular scans, TEM is
far more dynamic, since merging is achieved for any type of concurrent I/0O, not
just for sequential scans of the index.

We further exploit prefetching strategies, by grouping multiple accesses in
a single composite request (analogous to multipage I/Os in [5]) that reduces
communication overhead between the query threads and the buffer manager and
permits advanced synchronization among them. An important difference is that
our composite requests consist of pages that will actually be requested by the
query. On the contrary, typical prefetching techniques retrieve pages that have
high-probability of being accessed in the future, but might be proven irrelevant
to the query. Another contribution of the TEM framework is that we address the
issue of fairness in the execution of the detached patches and introduce the notion
of data flow to achieve a steady flow of data pages to all query threads. This
allows efficient execution of complex query plans that pipeline records retrieved
by the index scans.

The rest of the paper is organized as follows: section 2 discusses the motiva-
tion behind our architecture. In section 3 we provide a detailed description of the
TEM and discuss related implementation and performance issues. In section 4
we define data flow and show how to support time constraints in the scheduling
of the detached query patches. Finally, section 5 contains the experiments and
in section 6 we draw the conclusions.

2 Motivation

Most commercial data warehouses maintain a pool of session-threads that are
being allocated to serve incoming user queries. In a data warehouse environ-
ment, the I/O is read-only and the query threads generate concurrent read page
requests.
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In the database literature there is an abundance of research on buffer allo-
cation and replacement strategies (e.g. [13,4,15]). For tree index structures, a
Domain Separation Algorithm [17] introduced multiple LRU buffer pools, one
for each level of the tree. Similar algorithms are discussed in [21, 7, 14]. However
in [6] Chou and DeWitt point out that for indices with large fan-out the root is
perhaps the only page worth keeping in memory. In data warehouses, indices are
typically created and refreshed through bulk operations. As a result the trees
tend to be rather packed and shallow and the potential improvements from a
domain separation algorithm are limited.

In a concurrent multi-user environment there is limited potential for improv-
ing the buffering of the leaf-level pages. Given n > 2 concurrent queries on an
100MB index (6,400 16KB pages) and uniform distribution of accesses, the prob-
ability that the same data page is requested by 2 or more queries at any given
time is:

Dovertap(n) = 1 — p(1/6400,0,n) — p(1/6400,1,n) (1)
where: |
_ n k _ \n—k

is the standard binomial distribution. In Figure 1 we plot poyeriap as the number
of concurrent queries increases from 1 up to 10,000. We also plot the same
probability for a more realistic 80-20 access pattern, where 20% of the pages
receive 80% of the requests. These graphs show that for reasonable numbers of
concurrent users, these probabilities are practically zero.

For most cases, where only a small part of the index fits in memory, over-
lapping requests have to occur within a relatively short time-window before the
replacement strategy used flushes “idle” pages to disk. To overcome this limita-
tion, we propose a non-blocking mechanism, in which requests for pages that are
not in memory are detached from the current execution while the query thread
advances its scan. We call this model of execution transcurrent because it de-
taches the processing of the requested I/O and delegates it as a query patch to
an asynchronous service thread. This creates the illusion of a higher number of
concurrent queries and results in increased chances of getting overlapping 1/0.



3 Transcurrent Execution Model (TEM)

In this section we propose an architecture for the TEM. Our goal through-
out the design was to require the least amount of modifications for integration
into existing systems. The architecture introduces a new “Service Thread” (ST)
for each active index, i.e. an index that is accessed by a query. This thread
is interjected between the buffer manager and the query threads as shown in
Figure 2.

The ST accepts all read-page requests for its corresponding index. Requests
for pages that are in memory are immediately passed to the buffer manager
and ST acts as a transparent gateway between the query thread and the buffer
manager, as seen in the Figure.! For pages that are not in the buffer pool their
requests are queued within the ST. The query thread that issued the request can
either block until the page is actually read, or in some cases advance the index
scan. In the later case the processing of the page is detached and performed
internally, as a query patch, by ST when the page is actually fetched from disk.

Our goal is to optimize the execution order of the requests that are queued in
ST in order to achieve higher buffer hit ratio. Assuming that the buffer manager
is using a variant of the LRU replacement policy, an optimal execution strategy
for ST would be to put requests on the same page together, so that subsequent
reads would be serviced immediately from the pool. For that, we use a circular
scan algorithm [8,23] that is frequently used for scheduling I/O at the disk
controller level. By using the same type of algorithm for our synchronization
step, we not only achieve our goal, which is to maximize hit ratio, but we also
generate an I/0 stream that is bread-and-butter for a modern disk controller.

3.1 Index Scans for TEM

In an traditional index scan, each page request will block the query thread until
the page is brought in the buffers. In the TEM if the page is not in the buffer
pool, then the request is queued and will be executed at a later time according
to the scheduling algorithm described in the next subsection. We then have the
option to block the query thread, until the page is actually fetched from the disk
or let it scan the rest of the tree.

For indexes that are created using bulk-load operations in a data warehouse,
non-leaf pages occupy a very small fraction of the overall index space. Assuming
relatively frequent queries on the view, most of these pages will be buffered in
memory. As a result there is no evidence in getting any improvement by advanc-
ing the search for non-leaf pages, since in most cases the page will be available
in the buffers anyway and the scan will not be blocked. Therefore, we do not
consider detaching execution of non-leaf page requests and the query thread is
blocked whenever such a request is not immediately satisfied from the buffer pool.

! We assume that the manager provides a bmPageLookUp(pageld) function for deter-
mining whether the requested page is in the buffers.



On the contrary, for the leaf (data) pages, because of the asynchronous execution,
the probability that the page is in the pool at the exact time that the request
is made is very small, see Figure 1. Therefore for leaf pages it is faster to de-
tach their requests without checking the buffers with the bmPageLookUp(pageld)
function, otherwise a lot of thread congestion is happening.

3.2 Synchronization of Detached Query Patches

The ST maintains the current position on the file of the last satisfied disk
1/0. Query threads continuously generate new requests, either as a result of a
newly satisfied page request, or because of the non-blocking execution model that
allows the search algorithm to advance, even if some page-reads are pending.
Incoming page requests are split into two distinct sets. The first called “left”
contains requests for pages before the last satisfied page of the index and the
set called “right” (assuming a file scan from left to right) contains requests for
pages in-front of the last page accessed. These are actually multi-sets since we
allow duplicates, i.e multiple requests for the same page by different threads.
The next request to satisfy is the nearest request to the current position from
the right set that is realized as a heap. When the right set gets empty, the
current position is initialized to the smallest request in the left set and the
left set becomes the right set.

An extension that we have implemented but not include in this paper is to
permit pages in the right set, even if they are within some small threshold
on the left of the current position. The intuition is that these pages are likely
to be in the cache of the disk controller. This allows better synchronization of
queries that are slightly “misaligned”. We also experimented with an elevator
algorithm that switches direction when reaching the end/start of the file. To our
surprise this algorithm was much slower than the circular scan algorithm that
we described, probably due to conflicts with the scheduling implemented at the
hardware of our disk controller. We plan to investigate this matter on different
hardware platforms.

3.3 Composite Requests for Increased Overlapping I/0

An opportunity for optimization arrives when processing nodes just above the
leaves of the tree. When such a node is processed we group multiple requests
for leaf pages into a single composite multi-page request. Notice that we do not
want to apply the same technique when accessing intermediate nodes higher in
the tree structure, otherwise the search is reduced to a Breadth First Search
algorithm that requires memory proportional to the width of the index.
Composite requests are more efficient because of the lower overhead required
for the communication between the query-thread and the ST. However, an even
more important side-effect of using composite requests it that the ST is given
more information at every interaction with the query threads and is able to
provide better synchronization. For instance, 10 concurrent single-page requests



provide at any given point 10 “hints” to the scheduler (ST) on what the future
I/O will be. In comparison composite requests of 100 pages each,? provide a
hundred times more information at any given point. Looking back at Figure 1
this generates the illusion of having 10 * 100 = 1000 concurrent queries for

which now the probability of overlap is 2 ZZJ;ZZ,(,l(?g?) = 1‘??1968_652 = 9998 times

(i.e four orders of magnitude) higher! Furthermore, due to the non-blocking
execution of the index scan, the query threads are constantly feeding the ST
with more information, resulting in even higher gains. In this sense, even-though
transcurrent query execution and dynamic synchronization can be seen as two
orthogonal optimizations they are very naturally combined with each other.

3.4 Scheduling v.s. Cache Management

In our initial designs we thought of exploiting the large number of pending
requested queued in ST for better cache management in a way similar to [22]. We
tested an implementation of a modified LRU policy that avoids replacing pages
that have pending requests on the right set of ST. Even though this resulted
in a slightly higher buffer hit ratio than plain TEM, the gains did not show up
in query execution times because of the per-request overhead of synchronizing
ST’s structures with the buffer manager. Our current implementation is cleaner,
easier to integrate with existing systems and reorders the requests in a way that
is ideal for LRU as shown in Figure 5.

4 Flow Control Extensions

Deferred requests are used in TEM as a mean to identify overlap among con-
current queries. A potential drawback is that a request that is diverted to the
left set (see section 3.2) can be delayed while incoming requests keep pushing
the request flow to the right set. Starvation is not possible, because the current
file position is monotonically increasing up to the point that the last page of the
index is read or the right set is exhausted, or both. However, for queries whose
output is consumed by another thread, like a sub-query in a pipelined execution
model; a delayed delivery of data will block the consuming thread.

In TEM, the ST executes detached leaf page requests while the query thread
QT processes requests for non-leaf pages. Assuming that QT processes Por
non-leaf pages per second and the ST processes Psp leaf pages per second the
aggregate processing for the query is: P,yerann = Por + Pst. Since output is only
produced when scanning leaf pages, from the user point of view the effective
progress of his query ¢ that we denote as data flow (DF) is:

DF(q) = Psr (3)
Intuitively the larger this number is, the more bursty the output of the query
gets. In the presence of many concurrent queries, a steady data flow for all of

2 the fan out of a 2-dim R-tree with 16KB page size is 819. We assume that one in 8
leaves under a visited level-1 page are relevant to the query



them can be achieved by bounding the idle time t;q. of their leaf page requests.
This idle time is defined as the period between two consecutive satisfied leaf
page requests. The ST maintains a time-stamp information for each query that
is running in the system and uses the index. This time-stamp is updated every
time a leaf-page request is satisfied for the query. The administrator defines
a “hint” for the maximum time W that a detached leaf-request is allowed to
be delayed. Our implementation uses a Flow Control Thread that periodically
checks for expired requests. Assuming that this thread awakes every T time-units
and checks all time-stamps, then a query’s output might block, waiting for a data
page for a period of t;q;0 = W + T and therefore the minimum data flow for the
query will be:

DF oy = pages/sec (4)

wW+T

Leaf page requests that have expired are inserted in a priority queue that uses the
delay information for sorting them. As long as the ST finds expired requests in
this queue, it processes them before those in the right set. The number of page
requests in this queue is bounded by the number of concurrent queries in the
system, as we only need at most one expired request per query to lower-bound
the data flow. This prevents the data flow mechanism to become too intrusive if
very small values for W and T are chosen.

5 Experiments

The experiments that we describe in this section use an implementation of TEM
on top of the ADMS [18] database management system. We have used the TPC-D
benchmark [9] for setting up a demonstration database. TPC-D models a busi-
ness data warehouse where the business is buying products from a supplier and
selling them to a customer. The measure attribute is the quantity of products
that are involved in a transaction. We concentrate on an aggregate view for this
dataset that aggregates the quantity measure on these three dimensions.

This view was materialized using a 3-dimensional R-tree stored in a raw
disk device. We did not use regular Unix files in order to disable OS buffering.
The total number of records in the view was 11,997,772 and the overall size
of the R-tree was 183.8MB. The number of distinct values per attribute was
400,000, 300,000 and 20,000 for product, customer and supplier respectively.
All experiments were ran in a single CPU SUN Ultra-60 workstation.

5.1 Comparison of TEM Against an Unsynchronized Execution

For the first experiment, we executed between 10 and 200 concurrent random
range queries, each running in a different thread.® We used three different config-
urations. The first, which is denoted as “CEM?” in the graphs, refers to the “con-
ventional” execution model, where all queries are unsynchronized. The second

3 Due to space limitation we omit similar results for skewed workload
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configuration used the transcurrent execution model with single page requests
while the last one used composite requests as described in section 3.3. These
configurations are denoted as TEM and TEM+ respectively. The ST maintains
a pre-allocated pool of request objects that are used in the left and right sets.
For the TEM/TEM+ configurations we set the request pool size to be 1MB and
the buffer pool size of ADMS to 15MB. Since CEM does not use the ST, we gave
the extra 1MB worth of memory to the buffer manager and set its pool size to
be 16MB.

Figure 3 depicts the overall execution time for all queries for the three con-
figurations, as the number of concurrent queries increases from 10 to 200. For
relatively light workload (10 concurrent queries), the overall execution time is
reduced by 13.9% in TEM and 16.9% in TEM+. As the number of queries in-
creases, the differences between the three configurations become even more clear.
The effective disk I/O bandwidth, which is computed from the number of page
requests serviced per second was 8.67MB /sec for the CEM and 13.38MB/sec for
the TEM+.

Figure 4 shows the buffer hit ratio as the number of queries increases. Because
of the congested query I/O the unsynchronized execution achieves a very poor
hit ratio. For the TEM+ the hit ratio increases with the number of concurrent
queries and is almost optimal as shown in the Figure.

In Figure 5 we plot the (logical) page requests for 40 queries after they are
reordered by the ST and passed to the buffer manager. The ST dynamically
aligns requests at the right set to exploit spatial locality. These groups are
further stacked as shown in the Figure. This I/O pattern is ideal for the LRU
policy because of its high time-space locality.

5.2 Experiments with Flow Control

For the following experiment, we implemented the flow-control extensions de-
scribed in section 4. This new configuration is denoted as TEM+/FC. We set
the time-out period W to be lsec and the sampling period of the Flow Con-
trol Thread T to 0.1sec. We then executed 50 concurrent queries and mea-
sured the average idle time for each one of them in the tree configurations
(CEM, TEM+,TEM+/FC). For the CEM this idle time was 1.7sec on the aver-
age for all queries and can be justified from the heavy congestion in the disk for
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50 concurrent queries. For TEM+ the average idle time is much higher at 5.8sec
on the average and 21sec in the worst case. Notice that the total execution time
is much lower for TEM+ : 91.35sec, v.s. 134.96 sec, i.e. 32.3% lower. The reason
that the idle time is higher is because of detached query patches of leaf page
requests that are being delayed in the left set as described in subsection 4. In
Figure 6 we plot the average idle time over all queries along with the computed
standard deviation. This graph shows that not only TEM+/FC provides the
lowest idle time but also has the smallest standard deviation, which means that
it treats all queries fairly.

6 Conclusions

In this paper we argued that conventional index scans and buffering techniques
are inadequate for utilizing modern disk hardware and thus fail to support a
highly concurrent workload against tree indexes. We showed analytically and
through experiments that in an unsynchronized execution, overlapping I/0 is
only exploited if it occurs within a small time-window. We then introduced
the transcurrent execution model (TEM) that exploits intra-parallelism of in-
dex scans and dynamically decomposes each query into a set of disjoint query
patches. This allows uninterrupted processing of the index, while the disk is
serving other I/O requests.

Our experiments demonstrate that the transcurrent query execution results
in substantial performance benefits in terms of query execution time, buffer
hit ratio and disk throughput. These benefits increase as the workload in the
warehouse increases and offer a highly scalable solution to the I/O problem
of data warehouses. In addition, TEM can be easily integrated into existing
systems; our implementation of ST using posix-threads showed no measurable
overhead from the synchronization algorithm and data structures, for 2 up to
500 concurrent queries in a single CPU workstation.
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